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interactions during mathematical problem solving 
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Abstract 
This article extends the socio-cultural notion about the cognitive consequences of discourse.   Based on an empirical 
analysis of data of high school students engaged in problem solving, the study reported here posits the notion of
socially emergent cognition as a process through which ideas and ways of reasoning materialize from the discursive
interactions of interlocutors that go beyond those already internalized by any individual interlocutor.  The context of
the students� work is a combinatorial problem set in a non-Euclidean space, called Taxicab.  Emerging from their 
discourse, the students articulate isomorphisms to solve a generalized version of the given problem. 
Keywords: Discourse; Socially emergent cognition; Isomorphism. 
 
Cognição socialmente emergente: resultados particulares de interações discursivas aluno�aluno 

durante a resolução de problemas matemáticos 
 

Resumo 
Este artigo aprofunda a noção sociocultural acerca das conseqüências cognitivas do discurso. Com base em uma
análise empírica de dados sobre o modo como alunos de colegial solucionam um problema, o estudo aqui relatado
propõe o conceito de cognição socialmente emergente como um processo mediante o qual idéias e modos de
raciocínio afloram da interação discursiva de interlocutores, indo além daquelas já internalizadas por todo e qualquer 
indivíduo. O contexto do trabalho dos alunos é um problema combinatório situado num espaço não-euclidiano 
chamado Táxi. Emergindo de seu discurso, os alunos articulam isomorfismos para solucionar uma versão geral do
problema dado. 
Palavras-chave: Discurso; Cognição socialmente emergente; Isomorfismo. 
 

 
In mathematics education, the topic of discourse 

and its cognitive influence in mathematics classrooms has 
been the subject of numerous studies.  The importance of 
individual communication and group discussion in 
learning are processes about which mathematics educators 
agree.  As Cobb, Boufi, McClain, and Whitenack (1997) 
note, consensus on this point within the mathematics 
education community transcends theoretical differences 
and include researchers who draw primarily on 
mathematics as a discipline, on constructivist theory, and 
on sociocultural perspectives.   

This consensus notwithstanding, two broad lines 
of research can be distinguished.  On the one hand, the 
nature of communications and how teachers can 
encourage and support communicative acts among 
students that are both productive and mathematical have 
been the subject of empirical research and theoretical 
reflection (for example, see Alrø; Skovsmose, 1998; Cobb; 
Boufi; McClain; Whitenack, 1997; Fernandez, 1994; 
Maher, 1998; O'Connor; Michaels, 1996; Seeger, 2002; 
Sfard, 2000, 2001; Sfard; Nesher; Streefland; Cobb; 
Mason, 1998).  In these studies, teachers are seen as 
instrumental in triggering either students� reflective 
discourse or their otherwise productive discussions.  As 

Cobb, Boufi, McClain, and Whitenack hypothesize (1997), 
learners� participation in reflective discourse �constitutes 
conditions for the possibility of mathematical learning� (p. 264, 
original emphasis).  On the other hand, a question that 
arises is how and to what extent can such discussions 
occur among students themselves, particularly when 
teachers play a minimal role to none at all in triggering 
reflective discourse or otherwise mathematically 
productive discussions.  This question points to others: 
Do these discussions enable students to go beyond 
exchanging information, providing a discursive context for 
their collective to achieve novel cognitive results by 
pushing against the boundaries of each others �zone of 
proximal development�?  In what ways can interlocutors 
develop discursively mathematical ideas and reasoning that 
go beyond those of any individual interlocutor but that are 
later reflective of individual interlocutor�s understanding?  
That is, is socially emergent cognition possible in settings 
of student-to-student discursive interactions? 

 
Theoretical perspective 

 
In this study, key terms include discourse, 

student-to-student or peer mathematical discussion, and 
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socially emergent cognition.  Discourse here refers to 
language (natural or symbolic, oral or gestic) used to 
carry out tasks � for example, social or intellectual � of 
a community.  In agreement with Pirie and 
Schwarzenberger (1988), student-to-student or peer 
conversations are mathematical discussions when they 
possess the following four features: are purposeful, 
focus on a mathematical topic, involve genuine student 
contributions, and are interactive.  Additionally, in the 
context of the data for this article, these student-to-
student discursive collaborations involve minimal, 
substantive interaction with a teacher or researcher. 

This study is informed by and goes beyond an 
essential tenet of Vygotskyan socio-cultural psychology 
of learning.  A central tenet in Vygotsky�s 
developmental theory is the notion of the �zone of 
proximal development� (Vygotsky, 1978).  A child or 
learner�s �zone of proximal development is the distance 
between the actual developmental level as determined 
by independent problem solving and the level of 
potential development as determined through problem 
solving under adult guidance, or in collaboration with 
more capable peers� (Vygotsky, 1978, p. 86).  The zone 
of proximal development includes all the functions and 
activities that a learner can perform only with the 
assistance of someone else.  The �someone else� in a 
scaffolding process � rendering gradually diminishing 
support in response to learners� increased display of 
successful performance � could be an adult such as a 
teacher or another peer who has already mastered the 
particular function.  Eventually, as Vygotsky states, 
�newly awakened processes�are internalized, they 
become part of the child�s independent developmental 
achievement� (1978, p. 90). 

Theoretically, the results of this investigation 
go further than the Vygotskyan mechanism by which 
learners individually transcend the boundaries of their 
zone of proximal development.  Based on evidence 
from the data, this study posits the notion of socially 
emergent cognition as a process through which ideas 
and ways of reasoning materialize from the discursive 
interactions of interlocutors that go beyond those 
already internalized by any individual interlocutor.  
Working cognitively within and at the frontier their 
zone of proximal development, the interlocutors 
collaborate on a challenging mathematical task that not 
one interlocutor has already mastered and therefore 
scaffolds the thinking of the others.  Instead, as a by-
product of their engaged conversational interaction, 
evidenced in their interactional discourse, their mutually 
constituted ideas and ways of reasoning are 
subsequently internalized and later reflective of 
individual interlocutor�s understanding.  The product of 

their socially emergent cognition is not attributable to 
any one interlocutor but rather is a negotiated entity, 
constituted through discursive interactions, and 
eventually a shared part of the awareness of each 
interlocutor.  This notion surfaced from analysis of 
features and functions of conversational exchanges 
among four students engaged collaboratively, without 
assigned roles, to understand and resolve an open-
ended, combinatorial problem embedded in a non-
Euclidean plane.  The problem is presented in the next 
section. 

Before discussing the task and the context out 
which the analysis arose, it is important to note 
literature that corroborates the notion of socially 
emergent cognition.  After a grounded-theory analysis 
of the data from which the idea of socially emergent 
cognition materialized, I have become acquainted with 
the work of other researchers who have noted the 
potential and profit for learning that can occur from the 
collaboration among peers (for example, Damon; 
Phelps, 1991; Hutchins, 1995; Stahl, 2005).  From a 
�social interactional� approach, Damon and Phelps 
(1991) examine how cognitive growth is stimulated 
among fourth-graders, collaborating in �dyads� 
assigned to work on either mathematics or spatial 
problems and the following year on balance-scale 
problems.  They note features and outcomes of peer 
collaboration as a learning context.  In an ethnographic 
study of ship navigation as a case of �naturally 
occurring culturally constituted human activity,� 
Hutchins (1995) elaborates a notion of socially 
distributed cognition as computational processes 
resulting from practitioners engaged in a cultural 
activity.  In one instance, he analyzes how a trained 
navigational team successfully resolved a potentially 
disastrous, novel situation that they encountered on the 
high seas.  His analysis of this instance leads him to 
observe that �although the participants may have 
represented and thus learned the solution after it came 
into being, the solution was clearly discovered by the 
organization before it was discovered by any of the 
participants� (Hutchins, 1995, p. 351).  From the 
perspective of computer-supported collaborative 
learning, Stahl (2005) presents a theory of group 
cognition as knowledge building at the level of small 
groups of students functioning within a computer 
environment.  He calls for further empirical research 
�to clarify the nature of shared knowledge and group 
cognition� (p. 87). 

The present study differs from the three 
investigations described above.  This study analyzes the 
socially emergent cognition that results from the 
conversational interaction of four novice and non-
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hierarchically identified individuals who collaborate 
face-to-face to solve an open-ended but well-defined 
mathematical problem.  Similar to each of the three 
investigations, this study bases its analysis on the 
discourse of its participants. 

The analysis of conversational exchanges is 
informed by the work of Davis (1997), who inquires 
into teacher listening and its consequent impact on the 
growth of student understanding.  This study builds on 
his inquiry.  It also applies and extends Davis�s 
categories to analyze discursive interactions of students 
engaged in discourse.  This theoretical construct 
contains has four categories � evaluative, informative, 
interpretative, and negotiatory � described below, and 
guides the inquiry into how learners� discursive 
exchanges contribute to the mathematical ideas and 
reasoning that they evidence. 

Evaluative: an interlocutor maintains a non-
participatory and an evaluative stance, judging 
statements of his or her conversational partner as either 
right or wrong, good or bad, useful or not. 

Informative: an interlocutor requests or 
announces factual data to satisfy a doubt, a question, or 
a curiosity (without evidence of judgment). 

Interpretive: an interlocutor endeavors to tease 
out what his or her conversational partner is thinking, 
wanting to say, expressing, and meaning; an interlocutor 
engages an interlocutor to think aloud as if to discover 
his or her own thinking. 

Negotiatory: an interlocutor engages and 
negotiates with his or her conversational partner; the 
interlocutors are involved in a shared project; each 
participates in the formation and the transformation of 
experience through ongoing questioning of the state of 
affairs that frames their perception and actions. 

These are not mutually exclusive categories; a 
unit of meaningful conversation may have more than 
one interlocutory feature.  Based on the theoretical 
perspective of this study and analysis of the data, 
socially emergent cognition arises from negotiatory 
interlocution in a collaborative problem-solving setting.  
It presupposes that interlocutors are engaged in a 
student-to-student, mathematical discussion with 
minimal teacher intervention. 

 
Research context 

 
This research lies within a longitudinal 

investigation, now in its 18th year, which traces the 
mathematical development of students while they solve 

open-ended but well-defined mathematical problems 
(cf., Maher, 2005).1 As Weber, Maher, and Powell (in 
press) note, many of these problems are challenging in 
the sense that students often initially do not possess the 
procedural or algorithmic tools to solve the problems, 
but are asked to develop their own tools in the 
problem-solving context.  In this environment, 
collaboration and justification are encouraged, and 
teachers and researchers do not provide explicit 
guidance on how problems should be solved.  One 
aspect of the longitudinal study is that students work on 
strands of challenging tasks � or sequences of tasks that 
may differ superficially but pertain to a class of 
mathematical ideas.  The use of strands of related, 
challenging tasks allows researchers to trace the 
development of students� reasoning about a particular 
class of mathematical ideas over long periods of time (e. 
g., Maher; Martino, 2000). 

The participants are four students in their last 
year of high school, who are studying advanced high 
school mathematics and who, from their entry into first 
grade, have participated in mathematical activities of a 
longitudinal study on the development of mathematical 
ideas.  For these twelve years of their participation in 
the longitudinal study, these students have engaged 
tasks from several strands of mathematics, including 
counting and combinatorics, algebra, probability, and 
calculus, both in the context of classroom investigations 
as well as in after-school sessions (for details, see 
Maher, 2005).  Throughout the study, the mathematical 
concepts around which the tasks were designed 
preceded their introduction to the students in their 
regular school curriculum. 

In the counting and combinatorics strand, the 
students worked on problems from second grade 
through the end of high school (12th grade).  During 
this 11-year period, researchers engaged them in 
approximately 20 sessions in this strand of counting and 
combinatorics tasks.  A set of problems in this strand 
that is relevant to this study, called Towers Problems, 
asks how many different towers of interlocking cubes 
(for example, Unifix cubes2) can be built of a 
particular height when selecting from a certain number 
of colors of the cubes and to justify the solution 
obtained.  From grades 3 to 10, the participants worked 
on versions of this problem with varied conditions.  
The first version given to the students was the four-tall 
towers problem, which they received when they were 
about nine years old (grade 3) in the following form:  

 
Your group has two colors of Unifix cubes.  Work 
together and make as many different towers four cubes 
tall as is possible when selecting from two colors.  See if 
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you and your partner can plan a good way to find all 
the towers four cubes tall. 
 
Then in grades four, five, and ten, they 

revisited this problem and worked on variations of it 
such as the five-tall towers problem with two colors, the 
four-tall towers problem with three colors, the n-tall 
towers problem with k colors, and this one: 

 
Find all possible towers that are 5 cubes tall, selecting 
from two colors with exactly two of one color in each 
tower.  Convince us that you have found them all. 
 
For these Towers Problems, the students over 

time built knowledge of their underlying, similar 
mathematical structure. 

 
Previously reported results 

 
It is necessary to know how the students 

reason about the Towers Problem and how they 
connect it to Pascal�s triangle to appreciate the 
mathematical ideas and reasoning evidenced in the 
conversation of the students presented in the results 
section of this article.  In the fourth grade, they began 
to use a case-based reasoning and various counting 
strategies to justify that they had constructed all 
possible different towers five-tall when selecting from 
cubes of two different colors (red and yellow).  The 
number of red cubes in the towers defined their cases.  
For instance, they found 32 different five-tall towers 
and, for the case of towers containing exactly two red 
and 3 yellow cubes, they reasoned that there are 10 
different five-tall towers.  Challenged to justify this 
result, the students reasoned again by cases, explaining 
that there are four different five-tall towers with two 
red cubes �stuck� together, three with one yellow cube 
between the two red cubes, two with two yellow cubes 
between the two red cubes, and one with three yellow 
cubes between the two red cubes.  In this instance, the 
number of yellow cubes between the two red cubes 
defines each case. 

The next time they visited the five-tall towers 
problem was in the tenth grade, two years before they 
worked on the problem that is the focus of this report.  
At that time, students were asked to revisit a question 
they answered in the fourth grade: how many towers 
could be built five-tall when selecting from cubes 
available in yellow and red that contained exactly two 
red cubes.  Two students, one of whom is a participant 
in the present study, used 0s and 1s to represent 
respectively yellow and red cubes (see Figure 1) as well 

as use cases to organize their towers and justify their 
solution. 

 
Figure 1 � Michael and Ankur�s written work 
for all five-tall towers containing exactly two 
red and three yellow cubes. 

 
Ankur and Michael discuss their work given in 

Figure 1.  As Muter (1999) reports, they explain that a red 
cube is held fixed in the top position and then, starting in 
the next lower position, the second red cube is moved 
successively into the lower positions until it reaches the 
bottom position.  Afterward, this process is repeated each 
time with the fixed red cube in the next lower position 
until the two red cubes occupy the last two positions at 
the bottom.  Here, six years after they first developed 
reasoning by cases, their case-based argument concerns 
the fixed position of one of the one red cubes. 

After the students explained their solution, a 
researcher introduced them to combinatorial notation.  
Uptegrove (2004) notes that in the previous session, the 
researcher introduced them to the expression 

 

a + b( )n
 

 
and that for n = 2 and 3 the students expanded the 
binomial expressions into polynomials.  In this session, 
the researcher explained that the question of the number 
of different five-tall towers with exactly two red cubes is 
equivalent to asking how many combinations there are 
when selecting two object from a set of five different 
objects and presented how to represent this idea with 
combinatorial notation in four ways:  
 

5C 2 , C 5,2( ),
5
2







, C2

5  

 
She then showed the students how the binomial 
expansion and Pascal�s triangle are related by the 
correspondence for n = 0, 1, 2, and 3, wrote out the 
numerical entries of the first five rows of Pascal�s 
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triangle, and invited the students to link their work 
on the Towers Problem to Pascal�s triangle.  

The students were able to make these links.  
They noticed the 10 that appears in the fifth row in 
Pascal�s triangle corresponding to the expression 

 
5
2

 

 
 

 

 
  

 
also presented the number of different five-tall towers 
with two red blocks (and three yellow cubes).  They 
related the four-tall towers problem to the fourth row 
of Pascal�s triangle � 1 4 6 4 1 � to subsets of 4-tall 
towers when choosing from two colors of Unifix 
cubes (red and yellow).  For instance, the students say 
that the 1 represents the one tower consisting of four 
red cubes, and the other 1 is for the tower consisting of 
four yellow cubes.  This was the first time that the 
students connect a specific version of the Towers 
Problem to numerical entries in Pascal�s triangle.  

In summary, over the course of time, from 
fourth to tenth grade, the students developed a variety 
of mathematical ideas and ways of reasoning about 
counting and combinatorial problems.  Among them, 
they invent counting strategies, discovered reasoning by 
cases, and investigated relationships between Towers 
Problems and Pascal�s triangle. 

 
Method 

 
The research session of the present study 

occurs after school hours, at the end of the last year in 
high school.  The students collaborate on the following 
culminating task of the research strand on 
combinatorics � The Taxicab Problem:3 

 
A taxi driver is given a specific territory of a town, 

shown below.  All trips originate at the taxi stand.  
One very slow night, the driver is dispatched only three 
times; each time, she picks up passengers at one of the 
intersections indicated on the map.  To pass the time, 
she considers all the possible routes she could have taken 
to each pick-up point and wonders if she could have 
chosen a shorter route. 
 
Accompanying the problem statement, the 

participants also have a map, actually, a 6 x 6 
rectangular grid on which the left, uppermost 
intersection point represents the taxi stand (see below).  
The three passengers are positioned at different 
intersections, from left to right, as dots colored blue, 
red, and green, respectively, while their respective 

distances from the taxi stand are one unit east and four 
units south, four units east and three units south, and 
five units east and five units south. 

 
In addition to the problem, the data sources 

consist of a video record, consisting of 1 hour and 16 
minutes of the activity of the four participants from the 
perspective of two video cameras; a transcript of the 
videotapes combined to produce a fuller, more accurate 
verbatim record of the research session; the 
participants� inscriptions; and researcher field notes.  
The transcript is a textual rendering of verbal 
interactions, specifically, turn exchanges among the 
participants and between them and researchers, which 
in all consists of 1,619 turns at talk.  It should be noted 
that for approximately 77% of the time the students 
spent in discursive interaction with each other and 92% 
of this time without the physical presence of the 
researchers. 

The analytic method employs a sequence of 
phases, informed by grounded theory (Charmaz; 
Mitchell, 2001), ethnography and microanalysis 
(Erickson, 1992), an etic perspective based on an 
augmented framework of Gattegno�s notion of the 
contents of mathematical experiences (Gattegno, 1987; 
Powell, 2003), and an approach for analyzing video data 
(for an elaboration and examples of the analytic phases, 
see Powell; Francisco; Maher, 2004). 

Besides the non-Euclidean geometric setting, 
the Taxicab Problem has an underlying mathematical 
structure and encompasses concepts that resonate with 
those of other problems the participants have worked 
on in the longitudinal study (for details, see Maher, 
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2005).  Their implicit task was to formulate and test 
conjectures.  Researchers explicitly announced that they 
were to explain and justify conclusions.  After they 
worked on the problem for about an hour and a half, 
researchers listened as they presented their resolution 
and asked questions to follow movements in their 
discourse toward further justification of their solution.  
Their resolution goes beyond the problem task: They 
generalize it and propose isomorphic propositions.  It is 
in both of these actions that the students evidence of 
socially emergent cognition. 

A final methodological issue concerns the role of 
the teacher-researcher.  In the context of this investi-
gation, student-to-student mathematical discussions 
involve a teacher-researcher who engages in minimal 
substantive interaction with the students while they 
collaborate on the given task.  The teacher-researcher 
invites students to work on a mathematical task and is 
available to answer clarifying questions about the task.  
Later, the teacher-researcher listens to students describe 
their resolution of the task, how they arrived at it, and 
how the justify it. 

 
Results 

 
In an earlier analysis of these data from the 

analytic lens of the four categories of interlocution, Powell 
and Maher (2002) have illustrated that the conversational 
interactions among learners can advance their subsequent 
individual and collective actions.  In particular, their 
analysis suggests that among the four interlocutory 
categories interpretive and negotiatory4 interlocution  

 
have the potential for advancing the mathematical 
understanding of individual learners working in a small 
group, the personal or individual understanding of a 
learner is intermeshed with the understanding of his or her 
interlocutors, and the mathematical ideas and 
understanding of an individual and his or her group 
emerge in a parallel fashion. (p. 328, emphasis added) 
 
These three consequences of interpretive and 

negotiatory interlocution evoke the construct, socially 
emergent cognition.  As will be shown, socially emergent 
cognition is possible when interlocutors are engaged in 
negotiatory interlocution.  This type of conversational 
exchange provides the discursive space for ideas and 
reasoning to emerge that go beyond those of any 
individual interlocutor and that are subsequently reflected 
in the discourse of individual interlocutor. 

The four participants are Michael, Romina, Jeff, 
and Brian.  In the first four minutes of the research 
session, the researcher spends little time at the table with 

the students and responds only to student questions in a 
tailored yet sparse manner.  From then until 64 minutes 
later, the students engage with themselves.  They rather 
quickly organize themselves, requesting colored markers 
and assigning subtasks to each other.  Jeff inquires about 
why the routes to the blue destination point have the 
same length, Michael explains.  Romina requests help in 
devising an area, Jeff and Michael respond and inform her 
that the applicable notion is perimeter, not that of area.  
In general, the students carefully and respectfully listen 
and respond to each other�s questions, statements, and 
ideas. 

In the session, the first example of socially 
emergent cognition occurs after 14 minutes into the 
problem solving session. After almost 14 minutes into the 
research session, there is an interesting and pivotal 
interaction among Romina, Brian, and Jeff: 
 
Episode 15 

 

Romina: I think we�re going to have to break it apart and 
draw as many as possible. 

Brian:      Yeah, //that�s what I�m going to do. 

Jeff: // And then have that lead us to something?  What 
if we do- why don�t we do easier ones?  You 
know what I�m saying?  What if the- the thing- 
Do you have another one of these papers? 

 
In Episode 1, an agenda for action emerges from 

the students� interlocution.  Brian and Jeff accept the task 
implied in Romina�s statement and act on her heuristic.  
Furthermore, Jeff refines her suggestion in his 
interrogative: �why don�t we do easier ones?�  Romina�s 
statement and Jeff�s interrogative establish a new agenda 
for the group�s actions.  Importantly, this action agenda 
represents a watershed in their mathematical investigation.  
From this point onward, they no longer work on the 
combinatorial problem as given but instead pose and 
work on simpler situations to glean relevant information 
and extract insights from those situations so as to inform 
their understanding and resolution of the given problem.  
This agenda emerges from the students� negotiatory 
interlocution.  It was not posed fully formed by any one 
student.  However, after its materialization from the 
socially emergent cognition of the group forms part of the 
students� understanding of how they will proceed to 
resolve the given problem. 

Another instance of socially emergent cognition 
transpires over many turns of speech, spanning from 
about turn 159 to turn 1320.  Space does not permit a full 
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illustration of the development of the ideas and reasoning 
that comprise the students� socially emergent cognition.  
They have continual discursive interactions with the aim 
of building an isomorphism between a rule for generating 
the entries of Pascal�s triangle and the number of shortest 
routes to points on the taxicab grid.  Early in their work, 
the students manifest embryonic thinking about an 
isomorphism.  Romina wonders aloud: �can�t we do 
towers6 on this� (turn 159).7 Her public query catalyzes a 
negotiatory interlocution among Michael, Jeff, and her.  
Jeff, responding immediately to Romina, says, �that�s 
what I�m saying,� (turn 160) and invites her to think with 
him about the dyadic choice (�there or there� turn 162) 
that one has at intersections of the taxicab grid.  
Furthermore, he wonders whether one can find the 
number of shortest routes to a pick-up point by adding 
up the different choices one encounters in route to the 
point (turn 162).  Romina proposes that since the length 
of a shortest route to the red pick-up point is 10, then 
�ten could be like the number of blocks we have in the 
tower� (turn 169).  Romina�s query concerning the 
application of towers to the present problem task 
prompts Michael�s engagement with the idea, as well.  As 
if advising his colleagues and himself, he reacts in part by 
saying, �think of the possibilities of doing this and then 
doing that� (turn 180).  While uttering these words, he 
points at an intersection; from that intersection gestures 
first downward (�doing this�), returns the to point, and 
then motions rightward (�doing that�).  Similar to Jeff�s 
words and gestures, Michael�s actions also acknowledge 
cognitively and corporally the dyadic-choice aspect of the 
problem task.  Through their negotiatory interactions, 
Michael, Jeff, and Romina raised the prospect of as well as 
provided insights for building an isomorphism between 
the Taxicab and Towers Problems. 

The prospect and work of building such an 
isomorphism reemerges several more times in the 
participants� interlocution, and each time, they further 
elaborate their insights and advance more isomorphic 
propositions.  Eventually, the building of isomorphisms 
dominates their conversational exchanges.  
Approximately thirty-five minutes after Romina first 
broached the possibility of relating attributes of the 
Towers Problem to the problem at hand, the participants 
reengage with the idea.  Romina speculates that between 
the two problems one can relate �like lines over� to �like 
the color� and then �the lines down� to the �number of 
blocks�(turn 738).  What is essential here is Romina�s 
apparent awareness that each of the two different 
directions of travel in the Taxicab Problem needs to be 
associated with different objects in the Towers Problem. 

Romina uses this insight later in the session.  She 
transfers the data that she and her colleagues have 

generated from a transparency of a 1-centimeter grid to 
plain paper.  Their data are equivalent to binomial 
coefficients.  She identifies one unit of horizontal distance 
with one Unifix cube of color A and one unit of vertical 
distance with one Unifix cube of color B: 

 
Like doesn�t the two- there�s- that I mean, that�s one- that 
means it�s one of A color, one of B color [pointing to the 2 
in Pascal�s triangle].  Here�s one- it�s either one- either 
way you go.  It�s one of across and one down [pointing to a 
number on the transparency grid and motions with her pen 
to go across and down].  And for three that means there�s 
two A color and one B color [pointing to a 3 in Pascal�s 
triangle], so here it�s two across, one down or the other way 
[tracing across and down on the transparency grid] you can 
get three is two down [pointing to the grid]. (turn 1210) 
 
Furthering the building of their isomorphism, 

Michael offers another propositional foundation.  
Pointing at their data on the transparency grid and 
referring to its diagonals as rows, he notes that each row 
of the data refers to the number of shortest routes to 
particular points of a particular length.  For instance, 
pointing the array � 1 4 6 4 1 � of their transparency, he 
observes that each number refers to an intersection point 
whose �shortest route is four� (turn 1203).  Moreover, he 
remarks that one could name a diagonal by, for example, 
�six� since �everything [each intersection point] in the 
row [diagonal] has shortest route of six�(turn 1205).  In 
terms of an isomorphism, Michael�s observation points in 
two different directions: (1) it relates diagonals of 
information in their data to rows of numbers in Pascal�s 
triangle and (2) it notes that intersection points whose 
shortest routes have the same length can have different 
numbers of shortest routes. 
 

 
Figure 2 � Participant�s data arrays (from their 
perspective): (A) In green, empirical data of shortest 
routes between the taxi stand and nearby intersection 
points.  Jeff wrote the ones in blue to augment the 
appearance of the numerical array as Pascal�s triangle.  
From the participant perspective, to the left of Jeff�s 
numbers, Romina wrote in green the numbers 1, 2, 
and 3 to indicate the row numbers of the triangular 
array.  (B) The first five rows contain empirical data; 
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the remaining two rows contain assumed data values 
based on the addition rule for Pascal�s triangle. 

 
Later in responding to a researcher�s question, 

the participants develop a proposition that relates how 
they know that a particular intersection in the taxicab 
grid corresponds to a number in Pascal�s triangle.  They 
focus their attention on their inscriptions, A and B, in 
Figure 2.  Michael and Romina discuss correspondences 
between the two inscriptions.  Referring to a point on 
their grid that is five units east and two units south, 
Romina associates the length of its shortest route, 
which is seven, to a row of her Pascal�s triangle by 
counting down seven rows and saying, �five of one 
thing and two of another thing� (turn 1313).  Michael 
inquires about her meaning for �five and two� (turn 
1314).  Both Romina and Brian respond, �five across 
and two down� (turns 1317 and 1318).  She then 
associates the combinatorial numbers in the seventh 
row of her Pascal�s triangle to the idea of �five of one 
thing and two of another thing,� specifying that, left to 
right from her perspective, the first 21 represents two 
of one color, while the second 21 �is five of one color� 
(turn 1320), presuming the same color.  Using this 
special case, Romina hints at a general proposition for 
an isomorphism between the Taxicab and Towers 
Problems. 

 
Discussion 

 
The above presents evidence that through 

negotiatory interlocution students build an 
isomorphism during the course of the problem-
solving session. The content of the phases include the 
following with indication of when from the start of 
the session each occurs: (1) there exists a relationship 
between the Towers and Taxicab Problems, (turn 
159); (2) Similar to the Towers Problem, the Taxicab 
Problem has a dyadic choice, (turns 162 and 180); (3) 
The length of a shortest route to an intersection point 
corresponds to the height of a tower, (turn 169) 
[0:08:15]; (4) Each of the two different directions of 
travel in the Taxicab Problem needs to be associated 
with different objects in the Towers Problem, (turn 
738); (5) Rebuild the meaning of 2 to the n in the 
environment of the Towers Problem, (turns 171 and 
742-748); (6) Identify one unit of horizontal distance 
with one Unifix cube of color A and one unit of 
vertical distance with one Unifix cube of color B, 
(turn 1210); (7) A row �diagonal� of their data 
contains the number of shortest routes for 
intersection points whose shortest distance from the 

taxi stand is n, (turn 1203); (8) Intersection points 
whose shortest routes have the same length can have 
different numbers of shortest routes, (turn 1205); (9) 
A tower 3-high with 2 of one color and 1 of another 
color corresponds to routes to a point 2 down and 1 
across, (turn 1214); and (10) Intersection point five 
units east and two south from the taxi stand 
corresponds to five of one thing and two of another 
thing and, therefore, go the seventh row of Pascal�s 
triangle and the second and fifth entries of the 
triangle to find the number of shortest routes from 
the taxi stand to the intersection point five units east 
and two south from the taxi stand, (turns 1309-1320). 

The isomorphism that the students build is 
constituted from their negotiatory discursive 
interaction and represents and example of the 
theoretical construct � socially emergent cognition.  
Not one student presents the isomorphism fully 
formed, but rather their discursive interactions 
constitute a co-construction of the isomorphism.  It 
can be observed that early in the problem-solving 
session the three participants � Romina, Jeff, and 
Michael � articulate awareness of object and relational 
connections between their current problem task and a 
former one, the Towers Problem.  Later, upon 
noticing that their array of data resembles Pascal�s 
triangle and conjecturing so, the participants embark 
on building an isomorphism between the Towers 
Problem and the Taxicab Problem as an approach to 
justifying their conjecture since from previous 
experience they know that Pascal�s triangle underlies 
the mathematical structure of the Towers Problem.  
In this sense, their strategy can be interpreted as 
justifying their conjecture by transitivity: (a) Pascal�s 
triangle is equivalent to Towers and (b) Towers is 
equivalent to Taxicab; therefore implying that (c) 
Pascal�s triangle is equivalent to Taxicab.  They know 
(a) is true and embark on demonstrating (b) to justify 
and conclude (c). 

 
Notas 

 
1 This work was supported by grant MDR-9053597 (directed 

by R. B. Davis and C. A. Maher) and REC-9814846 
(directed by C. A. Maher) from the National Science 
Foundation.  Any opinions, findings, and conclusions or 
recommendations expressed in this paper are those of the 
authors and do not necessarily reflect the views of the 
National Science Foundation. 

2 Unifix cubes are manipulative materials of plastic cubes 
that interlock along one axis.  They are commercially 
available <didax.com/unifix/>, come an assortment of 
colors, and look like this: 
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3 This problem task is similar to ones that Kaleff and 
Nascimento (2004) discuss. 

4 In Powell and Maher (2002), the category of �negotiatory� 
interlocution is called �hermeneutic.� 

5 The transcription symbol �//,� a double slash mark, 
indicates the moment at which overlapping speech begins, 
and a dash �-� signals an interruption in a speaker�s 
utterance. 

6 Here Romina refers to a genre of problems, called the 
Towers Problems, discussed earlier in the Background 
section.   

7 For Romina and other participants in the longitudinal study, 
this comment is pregnant with mathematical and heuristic 
meaning derived from their constructed, shared 
experiences with tasks and inscriptions in the combinatorial 
and probability strands of the longitudinal study (see, for 
instance, Kiczek, 2000; Martino, 1992; Muter, 1999 and 
Uptegrove, 2004). 
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